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Abstract
The eigenspectral properties of the 2D isotropic harmonic oscillator, centrally
enclosed in the symmetric box with impenetrable walls, are studied for the
first time using the annihilation and creation operators and the infinitesimal
operators of the SU(2) group. It is shown explicitly how the imposition of
the Dirichlet boundary condition at a certain uniquely prescribed confinement
radius leads to the energy difference of two harmonic oscillator units between
all successive pairs of the confined states, defined by the projection angular
momentum quantum numbers [m,m ± 2] such that the lowest energy state
corresponding to the chosen m is excluded in the first pair.

PACS numbers: 03.65.−w, 03.65.Fd

1. Introduction

Models of spatially confined quantum systems are of great contemporary interest due to their
applications in many areas of physics. Increasing interest in the confined systems is due to
achievement in fabrication and investigation of mesoscopic scale semiconductor structures
like quantum dots containing one, few or a finite countable number of spatially confined
electrons [1]. The confined harmonic oscillator model has been successfully applied in
the study of vibronic spectra of point defects, impurities or luminescence centers in solids,
molecular vibrations in solids and the magnetic properties of an electron gas confined in the
semiconductor nanostructures. In these investigations it is assumed that electronic energy
sheets are represented by one or more dimensional harmonic oscillators. It is also useful for
modeling the influence of the environment on atom and molecule vibrations on surfaces, into
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nanotubes and fullerenes. A detailed list of the relevant references can be found in review
articles available in the literature [2]. The importance of the harmonic confinement potential
is due to the fact that it is finite and gradually increasing in nature.

A majority of the theoretical studies reported so far have dealt with the computation of
the changes in energy levels as a function of the parameters defining the confining potential.
It is of interest to obtain the general rules and conditions which govern the eigenspectrum
structure in terms of the well-defined characteristic features. An analysis of the characteristic
patterns in the eigenspectrum has been addressed only in a few quantum systems [3–6].

In this work we deal with an isotropic harmonic oscillator (IHO) in two dimensions
which is centrally confined by an impenetrable boundary of radius ρc (2D CHO model).
Computationally, the CHO model with impenetrable walls has been studied by solving the
radial Schrödinger equation together with the Dirichlet boundary condition imposed on the
radial wavefunction. As compared to the 2D IHO, such confinements significantly affect
the eigenspectral properties of the CHO. In particular, the equidistant separation between the
adjacent energy levels (n,m) and (n∓1,m+1) and the 2n+|m|+1 degeneracy of corresponding
energy levels are both disturbed as a consequence of confinement. The imposition of the
radially symmetric boundary is expected to lower the symmetry of 2D CHO. Here, it is
important to examine whether some kind of symmetry and its resulting systematic degeneracy,
are preserved or not. For comparison purposes, the spherically confined hydrogen atom (CHA)
can be considered as another model system whose unconfined counterpart exhibits a high order
of degeneracy of the energy levels due to its SO(4) symmetry. In this case it has been argued
that some kind of symmetry (so-called conditional symmetry) and degeneracy of the energy
levels are still conserved at finite values of the confinement radius [3–5]. To the best of our
knowledge, a comparable analysis involving the symmetry arguments for the 2D CHO is not
yet available. In this direction, very recently, the eigenspectral characteristics of constant
separation among corresponding levels with the specific value of the radius of confinement
have been examined [7] using the Gauss identities for the confluent hypergeometric function.

The purpose of this paper is to show that the algebraic method based on the formalism
of annihilation and creation operators provides a useful tool in studying the characteristic
properties of the eigenspectrum of the 2D CHO. Such an analysis also leads to a deeper
understanding of the origin of these features. In section 2, the CHO model with the boundary
condition is introduced and the resulting requirement imposed on the first derivative of the
confined radial wavefunction is derived. In section 3, the behavior of the energy levels
as a function of the confinement radius is discussed along with the reason for complete
removal of any systematic degeneracy in the 2D CHO. Section 4 deals with application of the
creation and annihilation operators on the radial wavefunction of a 2D CHO state. Finally, in
section 5 the main results are summarized.

2. The model

A centrally confined harmonic oscillator in two dimensions is the particle of mass µ (µ = 1
in h.o. units; in this system also h̄ = 1 and ω = 1) moving in the xy-plane in the potential

V (ρ) =
{ 1

2ρ2, ρ < ρc

∞, ρ � ρc.
(1)

Since the potential is axially symmetric, the projection of the angular momentum on the
symmetry axis (z-axis), Lz, is constant of motion and the wavefunction of the 2D CHO
stationary state is of the form

�Em(ρ, ϕ) = REm(ρ) eimϕ, (2)
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where m is the quantum number characterizing Lz and it takes the values m = 0,±1,±2, . . . .

Using wavefunction (2) in the Schrödinger equation

H�Em ≡ [− 1
2� + V (ρ)

]
�Em = E�Em, (3)

we obtain the radial Schrödinger equation for the radial wavefunction REm

d2REm

dρ2
+

1

ρ

dREm

dρ
+

[
2E − m2

ρ2
− ρ2

]
REm = 0. (4)

As is the case with 2D IHO, the 2D CHO states with quantum numbers m and −m have the
same energy and corresponding radial wavefunctions are identical REm(ρ) = RE,−m(ρ) due
to the appearance of the term with m2 in radial Schrödinger equation (4).

We note here that (a) the radial wavefunction REm of the 2D CHO stationary state satisfies
the Dirichlet boundary condition

REm(ρc) = 0, (5)

and (b) in order that the radial Schrödinger equation (4) has a nontrivial solution the first-order
derivative of REm follows the condition:(

dREm

dρ

)
ρ=ρc

�= 0. (6)

We conclude this section by stating that the elements of the radial Hilbert space of the 2D
CHO are square-integrable radial functions on (0, ρc) with weight ρ satisfying conditions (5)
and (6)

L2((0, ρc); ρ) =
{
REm : ρ → C

∣∣∣∣
∫ ρc

0
|REm(ρ)|2ρ dρ < ∞, REm(ρc) = 0

}
. (7)

3. Degeneracy of 2D CHO energy levels

It is well known that 2n + |m| degeneracy of 2D IHO emerges from the symmetry, higher than
the geometrical SO(2) symmetry responsible for the degeneracy of the states with quantum
numbers m and −m. Confining this system even inside the radially symmetric boundary with
impenetrable walls breaks the degeneracy and lowers the symmetry characteristic for 2D IHO.

Our aim in this section is to investigate if some kind of systematic degeneracy is still
present when confinement is imposed. In order to establish the criterion for 2D CHO energy
levels degeneracy, it will be convenient to study the energy levels as a function in confinement
radius E(ρc). In the remainder of this section only the levels with quantum numbers m � 0
will be considered due to the fact we have already discussed. We will start with solving radial
Schrödinger equation (4) [7]

REm(ρ) = ρm e−ρ2/2F

(
m + 1 − E

2
,m + 1, ρ2

)
. (8)

According to (5) energies of 2D CHO states are given by the zeros of the equation

F

(
m + 1 − E

2
,m + 1, ρ2

c

)
= 0. (9)

The first zero determines the energy of the lowest state with quantum number m whose radial
wavefunction has no nodes, i.e. its radial quantum number is n = 0; the subsequent zero
gives the energy of the 2D CHO state whose radial wavefunction has one node, i.e. its radial
quantum number is n = 1. Due to this reason, throughout this work, the 2D CHO states are
classified by the pairs of quantum numbers (nm) instead of (Em).
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Table 1. Energies of the 2D CHO stationary states (00), (21) and (32) for small values of the
confinement radius ρc and their discrepancy, in %, from the values calculated according to (12).

ρc E00 δ(%) E21 δ(%) E32 δ(%)

0.05 1156.637 46 0.000 49 20 699.891 20 0.000 02 43 784.038 26 0.000 03
0.1 289.160 39 0.000 85 5174.974 36 0.000 01 10 946.011 17 0.000 04
0.2 72.294 18 0.006 52 1293.749 84 0.000 49 2736.509 21 0.000 28
0.3 32.138 62 0.032 65 575.011 97 0.001 99 1216.238 68 0.000 63
0.4 18.089 90 0.097 00 323.462 46 0.008 22 684.152 99 0.004 03
0.5 11.593 62 0.236 03 207.040 58 0.020 11 437.883 19 0.009 80
0.6 8.071 42 0.488 78 143.809 24 0.041 72 304.117 46 0.020 30
0.7 5.954 56 0.906 27 105.693 36 0.076 70 223.471 86 0.036 91
0.8 4.587 73 1.541 36 80.965 64 0.131 92 171.141 00 0.064 11
0.9 3.657 85 2.466 81 64.023 60 0.210 74 135.274 64 0.102 00
1.0 3.000 00 3.749 51 51.916 48 0.322 20 109.631 37 0.156 50

3.1. Energy levels for small values of confinement radius

In the limit ρc → 0 the third term in the squared brackets in the radial Schrödinger equation (4)
can be neglected and (4) becomes the radial equation for the particle in infinite 2D potential
well

d2Rnm

dρ2
+

1

ρ

dRnm

dρ
+

[
2E − m2

ρ2

]
Rnm = 0 (10)

with Bessel function of integer order as a solution [8, 9]

Rnm = Jm(kρ), (11)

where k = √
2E. Imposing Dirichlet boundary condition (5) gives the equation for

determination of the energy Enm

Jm(ρc

√
2Enm) = 0, (12)

in other words the energy levels are given by the zeros of the Bessel function with corresponding
m value.

Since the Bessel function has no multiple zeros, the energy spectrum of 2D CHO is
non-degenerated at small ρc values. The order of the energy levels (nm) is determined by the
order of the Bessel function zeros [8]

(00), (01), (02), (10), (03), (11), (04), (12), (20), (05), (13), (06), (21),

(14), (07), (22), (30), (08), (15), (23), (31), (16), (24), (32), (40), . . . .
(13)

Table 1 contains the numerical values for the energies of 2D CHO states (00), (21) and
(32) obtained by the Numerov–Cooley method [10, 11]. Computation was performed with
30 000 grid nodes and following values of the parameters ε = 1×10−5, P = 4 and M = 100–
1000 (details can be found in [12]). The discrepancies δ, measuring the differences between
the computed energy values and values determined according to (12) and data from table 9.5
in [8], are given too. Entries in table 1 confirm our supposition that 2D CHO energy levels
coincide with the energy levels of infinite 2D potential well as well as the ordering of 2D
CHO levels for small values of the confinement radius. We note here that the term ‘small
confinement radius’ corresponds to different numerical values of ρc for the different 2D CHO
states.
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3.2. Energy levels for large values of confinement radius

It is obvious that 2D CHO energy spectrum approaches the energy spectrum of unconfined 2D
harmonic oscillator in the limit ρc → ∞. Let us define the quantity

�Enm = Enm − E0
nm → 0 for ρc → ∞ (14)

measuring the difference between the energy Enm of the 2D CHO state (nm) for large values
of confinement radius and the energy E0

nm = 2n + |m| + 1 of the 2D IHO state with the
same quantum numbers. When ρc takes the large values, we can use the asymptotic form for
confluent hypergeometric function (relation (13.5.1) in [8] or equation (7) in [3]) and give (9)
the form

�(b)

�(b − a)
(−1)−aρ−2a

c +
�(b)

�(a)
ρ2(a−b)

c eρ2
c = 0, (15)

where the abbreviations are used

b = m + 1, a = m + 1 − E

2
→ −n when ρc → ∞. (16)

Applying the asymptotic form for parameter a from the former relation and calculating
�(a) → �

(−n − �Enm

2

) = 2(−1)n+1

n!�Enm
, (15) gives

�Enm = 2ρ2(2n+m+1)
c e−ρ2

c

n!�(n + m + 1)
> 0 (17)

and subsequent ratios follows immediately

�En−2,m+4

�Enm

= n(n − 1)

(n + m + 2)(n + m + 1)
< 1,

�En−1,m+2

�Enm

= n

n + m + 1
< 1

�En−2,m+4

�En−1,m+2
= n − 1

n + m + 2
< 1, (18)

so that

En−2,m+4 < En−1,m+2 < Enm. (19)

This ordering implies that among the number of states with the same energy in the case of 2D
IHO, the state with the maximal value of m has the lowest energy value when confinement is
present. Also, the greater the azimuthal quantum number value is, the greater the energy will
be when the radial quantum number is held unchanged and relation (19) can be completed

En−2,m+3 < En−2,m+4 < En−1,m+2 < Enm < En,m+1 (20)

so that the ordering of the 2D CHO states emerges

(00), (01), (02), (10), (03), (11), (04), (12), (20), (05), (13), (21), (06)

(14), (22), (30), (07), (15), (23), (31), (08), (16), (24), (32), (40), . . . .
(21)

The 2D CHO level ordering (19) for the states (05), (13) and (21) have been numerically tested
using the direct evaluation of the roots of the confluent hypergeometric function as described
earlier [7]. The results presented in table 2 show the validity of the relative ordering prescribed
above. Also, it is evident that in large ρc limit energy levels are almost degenerated and the
same levels are in question as in the 2D IHO case.

5



J. Phys. A: Math. Theor. 41 (2008) 265203 L Stevanović and K D Sen

Table 2. Energies of the 2D CHO stationary states (05), (13) and (21) for the large values of the
confinement radius.

ρc E05

5.0 6.000 042 098 390 945 921 308 952 970 171 344 118 800 534 011 079 790
5.5 6.000 000 737 485 437 045 982 738 093 457 260 284 542 442 155 656 496
6.0 6.000 000 006 961 517 781 540 063 047 675 542 665 733 851 586 712 602
6.5 6.000 000 000 036 242 387 387 224 421 743 027 851 641 470 042 951 557
7.0 6.000 000 000 000 105 772 826 759 875 012 021 835 066 769 477 337 582
7.5 6.000 000 000 000 000 175 166 030 654 432 831 756 705 617 370 006 178
8.0 6.000 000 000 000 000 000 166 158 663 384 612 655 493 849 819 102 564
9.0 6.000 000 000 000 000 000 000 000 028 907 103 419 034 816 684 052 584

10.0 6.000 000 000 000 000 000 000 000 000 000 000 582 406 859 878 536 201
11.0 6.000 000 000 000 000 000 000 000 000 000 000 000 000 001 401 652 447

E13

5.0 6.000 144 905 921 532 840 636 370 663 382 961 467 832 209 610 207 531
5.5 6.000 002 736 942 048 351 459 373 748 636 726 789 347 034 523 551 667
6.0 6.000 000 027 250 180 453 131 316 739 092 227 623 635 469 424 776 267
6.5 6.000 000 000 147 601 395 056 888 961 984 901 507 166 561 594 893 087
7.0 6.000 000 000 000 444 086 723 003 420 721 469 694 274 723 533 704 497
7.5 6.000 000 000 000 000 753 278 727 339 579 418 370 644 268 398 626 831
8.0 6.000 000 000 000 000 000 728 440 374 769 224 304 475 078 950 121 100
9.0 6.000 000 000 000 000 000 000 000 130 426 331 885 694 627 752 138 226

10.0 6.000 000 000 000 000 000 000 000 000 000 002 681 294 579 686 515 238
11.0 6.000 000 000 000 000 000 000 000 000 000 000 000 000 006 548 594 180

E21

5.0 6.000 240 164 070 584 093 071 607 358 629 252 525 639 636 962 983 465
5.5 6.000 004 713 329 122 358 486 775 294 827 979 215 044 270 766 111 538
6.0 6.000 000 048 208 656 503 779 360 560 598 412 465 646 108 526 666 006
6.5 6.000 000 000 266 381 288 153 680 920 388 833 763 959 933 186 054 658
7.0 6.000 000 000 000 813 801 622 919 847 108 736 195 250 575 679 166 609
7.5 6.000 000 000 000 001 397 100 974 853 729 298 722 471 591 890 913 621
8.0 6.000 000 000 000 000 001 364 135 975 659 157 523 035 142 164 796 218
9.0 6.000 000 000 000 000 000 000 000 247 789 425 360 339 870 130 321 812

10.0 6.000 000 000 000 000 000 000 000 000 000 005 145 700 772 566 859 987
11.0 6.000 000 000 000 000 000 000 000 000 000 000 000 000 012 660 321 422

3.3. Simultaneous degeneracy

The symmetry group of the 2D IHO Hamiltonian is SU(2) group with three infinitesimal
operators of the symmetry transformations. These mutually independent operators,
commuting with the Hamiltonian, can be represented in terms of the products a

†
i aj (i, j = x, y),

where a† and a are the creation and annihilation operators, respectively. There are different
choices of the infinitesimal operators in the literature [13–15]. It will be convenient to use the
operators given in [15]

S+ = Sx + iSy, S− = Sx − iSy, Sz = 1
2Lz (22)

where

Sx = 1
2 (xy + pxpy), Sy = 1

4

(
p2

y − p2
x + y2 − x2

)
. (23)

It is obvious from the commutation relations between the operators S± and the operator Lz:
[Lz, S±] = ±2S±, that they are the ladder operators with respect to the angular momentum
projection on the z axis. When it is applied on the wavefunction of the 2D IHO state the operator
S+ raises its value by 2 h.o. units, and the operator S− lowers it by the same amount [15].

6
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For our analysis it will be sufficient to consider operator S+. In polar coordinates it is given
by the expression

S+ = 1

4
e2iϕ

[
i

(
∂2

∂ρ2
− 1

ρ

∂

∂ρ
− 1

ρ2

∂2

∂ϕ2
− ρ2

)
+

2

ρ2

∂

∂ϕ
− 2

ρ

∂2

∂ρ∂ϕ

]
, (24)

and its application on the wavefunction, given by the product of radial function R(ρ) (here R
stands for radial wavefunction of the 2D IHO state, Pnm, and the radial wavefunction of the
2D CHO state, Rnm) and angular function eimϕ , results in

S+(R eimϕ) = − i

2
(m + 1) ei(m+2)ϕ

(
1

ρ

d

dρ
− m

ρ2
+

E

m + 1

)
R = h(ρ) ei(m+2)ϕ, (25)

where the radial function h is determined by the expression in the bracket and the radial
Schrödinger equation is used to eliminate the second-order derivative. Repeated actions of k
times (k � 2) of the operator S+ lead to

Sk
+(R eimϕ) = ei(m+2k)ϕhk(ρ) = ei(m+2k)ϕ

[
h′

k(ρ,E)
d

dρ
+ h′′

k(ρ,E)

]
R (26)

where h′
k and h′′

k are the polynomial functions in energy.
Let R be the radial wavefunction of the 2D IHO state: R ≡ Pnm. In this case, according

to the commutation relations, hk ∼ Pn−k,m+2k , i.e. operator Sk
+ performs the transformations

between the pairs of 2D IHO states belonging to the same energy level and whose quantum
numbers m differ for 2k(k � 1).

When radial function R is the radial wavefunction of the 2D CHO state: R ≡ REm, the
application of the operator S+ produces different results to in the previous case of 2D IHO since
it is now the operator in a different radial Hilbert subspace. From (25) and (26) it follows that
it could be hk ∼ Rn′,m+2k with n′ �= n − k(k � 1). It is of interest to find the criterion for the
states (nm) and (n′,m+ 2k) to have the same energy E. Due to the results from subsection 3.2,
the following inequalities must be satisfied: E > 2n+m+1 and E > 2n′ +m+2k +1. Also, in
order for the boundary conditions (5) and (6) to be fulfilled, it must be h′

k(ρc, E) = 0. In other
words, 2D CHO states (nm) and (n′,m + 2k) have the same energy for given confinement
radius value ρc, if the following conditions are fulfilled:

(1) E > max(2n + m + 1, 2n′ + m + k + 1) (27)

(2) h′
k(ρc, E) = 0. (28)

It is clear from (25) and (28) that the conditions for degeneracy cannot be fulfilled for k = 1,
in other words, the 2D CHO states (nm) and (n′,m + 2) cannot have the same energy for any
finite ρc value. When k = 2, the 2D CHO states (nm) and (n′,m + 4)(n′ �= n − 2) will have
the same energy E if (1) E > max(2n + m + 1, 2n′ + m + 5) and

h′
2(ρc, E) ≡ − 2

ρc

(m + 2)

(
(m + 1)(m + 3)

ρ2
c

− E

)
= 0. (29)

The explicit appearance of energy term, E, in the above equation implies that the solution of
equation (29) depends on energy, which suggests that different states might have the same
energy at different values of confinement radius and simultaneous degeneracy can not arise.
A similar conclusion is also valid for other values of k.

It is worth mentioning here that the above results can be obtained using the form of radial
wavefunction (8) when the second condition for degeneracy (28) reduces to the requirement
that for given ρc must be

F
(
a + k, b + 2k, ρ2

c

) = F
(
a, b, ρ2

c

) = 0, (30)

7
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where the arguments a and b are given by (16). When Gauss identities for confluent
hypergeometric function are applied the same conclusions are obtained regarding the
simultaneous degeneracy.

Therefore, it is proven that the degeneracy of energy levels with �m = 2k, characteristic
for 2D IHO and governed by SU(2) generators, is completely removed when the confinement is
present. This is the expected result since the 2D IHO and 2D CHO Hamiltonians are different
operators, although they are formally given by the same expressions, due to the fact that their
domains are two different Hilbert spaces: L2((0,∞); ρ) and L2((0, ρc); ρ), respectively.

So far we have investigated the possibility of simultaneous degeneracy among the 2D CHO
states whose azimuthal quantum numbers m differ by an even integer: �m = 2k. We shall now
study the remaining possibility of simultaneous degeneracy at some ρc value among the 2D
CHO states whose azimuthal quantum numbers m differ for some odd integer: �m = 2k + 1.
We use the radial wavefunction (8) and the properties of confluent hypergeometric function. In
this case the 2D CHO states (nm) and (n′,m + 2k + 1) have the same energy E if the following
conditions are fulfilled:

(1) E > max(2n + m + 1, 2n′ + m + 2k + 2), (31)

(2) F
(
a, b, ρ2

c

) = F

(
a +

2k + 1

2
, b + 2k + 1, ρ2

c

)
= 0, (32)

for given ρc value. Unlike the Gauss identities connecting F(a + p, b + 2p, z) and F(a, b, z)

with p being an integer and valid for every a, b and z, condition (32) connects these functions
with p being a half-integer and it can be fulfilled only for specific values of the arguments
excluding, of course, the simultaneous degeneracy in this case as well.

3.4. Accidental degeneracy

In the preceding subsection we proved that simultaneous degeneracy cannot appear in 2D CHO.
However, comparing (13) and (21) shows that there are intersections between the levels, which
is reasonable since the energy values are the functions of the confinement radius as a parameter.
According to that fact it can happen that there exists a value of ρc at which two energy levels
can intersect; in other words accidental degeneracy between them occurs, in the sense that it is
not of systematic character, but appears at different ρc values for different pairs of states. The
confinement radius values at which the level intersections appear and corresponding energy
values for a number of states, given in table 3, are obtained by the Numerov–Cooley method
with 80 000 grid point and numerical parameters ε = 1 × 10−8, P = 4 and M = 100–1000.

According to (29) we stated that 2D CHO states (nm) and (n′,m + 4) with n′ �= n − 2
could have the same energy E for a given ρc value if E = (m + 1)(m + 3)/ρ2

c . But this
condition is too specific to be realized as confirmed by orderings (13) and (21), respectively.
Moreover, using the theorems on interlacing of Bessel function zeros [9], it can be shown that
the relative positions among the states with �m = 2k are the same in both small and large ρc

limits, leading to the conclusion that even accidental degeneracy is ruled out here.
The only possibility for degeneracy to appear is between the states with �m = 2k + 1

(k � 1) at confinement radius and energy satisfying condition (32). If the properties of
interlacing of the Bessel function zeros are used [9], along with the fact that Enm < En,m+p,
where p � 1 is an integer, it can be shown that, for the given ρc, states (km) and (0,m+2k +1)

are included in accidental degeneracy and that also the following relations among k and m
must be fulfilled: m � 5 if k = 1,m � 1 if k = 2 and m � 0 for k � 3. It is worth mentioning
that the energy separation between them is 1 h.o. unit in ρc → ∞ limit.
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Table 3. Energy and confinement radius at which the crossing between the corresponding states
occurs.

ρc States E

2.002 437 18 (15), (08) 19.862 154 88
2.140 391 94 (21), (06) 12.067 328 90
2.477 050 94 (16), (09) 16.455 165 88
2.699 633 22 (22), (07) 10.553 190 90
2.860 192 44 (30), (07) 9.879 926 49
3.062 617 45 (23), (08) 10.771 306 42
3.264 235 93 (31), (08) 10.171 751 44
3.349 221 46 (24), (09) 11.383 064 14
3.570 086 35 (32), (09) 10.856 761 60
3.628 051 34 (40), (09) 10.748 580 38

We note here that a similar conclusion about the eigenspectrum of 3D CHO was made in
[16] wherein only a qualitative analysis was presented.

Concluding, we state that the 2n + |m| degeneracy is completely removed in 2D CHO
system, as it is expected, and that there is no simultaneous degeneracy (of course, we exclude
the degeneracy of the states with quantum numbers m and −m) at any value of the confinement
radius. This is in contrast to the confined hydrogen atom problem where systematic degeneracy
between the levels with �l = 2 is present when confinement radius has the value l(l + 1). This
particular result is obtained from symmetry consideration based on the Lenz vector which,
together with orbital angular momentum, generates the SO(4) group which is the symmetry
group for the unconfined hydrogen atom [4].

4. Annihilation and creation operators

Another special feature of the 2D IHO eigenspectrum is given by the equal energy separation
of 1 h.o. unit between its successive levels. The aim in this section is to check whether
the similar condition holds for the 2D CHO eigenspectrum. To do so, we proceed with the
spherical components of annihilation and creation operators

a±1 = 1√
2
(ax ± iay), a

†
±1 = 1√

2
(ax ∓ iay), (33)

named left and right annihilation and creation operators in [15] and [17], where their
applications on the 2D IHO states are considered, and also their powers. In polar coordinates
they are given by the expressions

a±1 = 1

2
e±iϕ

(
∂

∂ρ
± i

ρ

∂

∂ϕ
+ ρ

)
(34)

a
†
±1 = −1

2
e∓iϕ

(
∂

∂ρ
∓ i

ρ

∂

∂ϕ
− ρ

)
(35)

a2
±1 = 1

4
e±2iϕ

{
∂2

∂ρ2
+

(
2ρ − 1

ρ

)
∂

∂ρ
− 1

ρ2

∂2

∂ϕ2
+ ρ2 ± 2i

[(
1 − 1

ρ2

)
∂

∂ϕ
+

1

ρ

∂2

∂ρ∂ϕ

]}

(36)

a
†2

±1 = 1

4
e∓2iϕ

{
∂2

∂ρ2
−

(
2ρ +

1

ρ

)
∂

∂ρ
− 1

ρ2

∂2

∂ϕ2
+ ρ2 ± 2i

[(
1 +

1

ρ2

)
∂

∂ϕ
− 1

ρ

∂2

∂ρ∂ϕ

]}

(37)
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with more involved relations for higher powers. To begin with, we restrict ourselves to the
operators ak

+1. Using (34), (36) and similar expressions for k � 3 it is obtained

ak
+1(R eimϕ) = ei(m+k)ϕgk(ρ) = ei(m+k)ϕ

[
g′

k(ρ,E)
d

dρ
+ g′′

k (ρ,E)

]
R (38)

where the functions g′
k and g′′

k are the polynomial functions of their arguments and radial
Schrödinger equation (4) was used to eliminate second- and higher-order derivatives of the
radial wavefunction.

With R ≡ Pnm and the commutation relation valid in the case of 2D IHO:
[
ak

+1,H
] = kak

+1,
it follows that gk ∼ Pn−k,m+k . In view of this and expression (38), when R ≡ Rnm (radial
wavefunction of the 2D CHO state) we have gk as the radial wavefunction of the 2D CHO
state (n′,m + k) with n′ �= n − k and energy E − k, where E is the energy of the 2D CHO
state (nm) (E ≡ Enm). Starting from (38) we can find the criterion for the energy separation
between the 2D CHO states (nm) and (n′,m + k) to be k h.o. units: Enm − En′,m+k = k. This
is realized if the following conditions are fulfilled:

(1) E > max(2n + |m| + 1, 2n′ + |m + k| + k + 1) (39)

(2) g′
k(ρc, E) = 0. (40)

For k = 1 it is found that g′
1 = 1

2 and g2 is not the function from the 2D CHO Hilbert
space (7) and energy separation between the 2D CHO states (nm) and (n′,m + 1) cannot be
1 h.o. unit at any finite ρc value. This is not a very surprising result considering the behavior
of the energy levels examined in the preceding section. When k = 2, the second condition
(40) is of the form

g′
2(ρc, E) ≡ −(m + 1)

(
1

ρc

− ρc

m + 1

)
= 0 (41)

and the solution follows immediately

ρc =
√

m + 1 and m � 0. (42)

With this specific choice of the confinement radius (42) one has Enm − En′,m+2 = 2 and since
ρc does not depend on energy, this general property includes all the states with given quantum
numbers m and m + 2 with non-negative m.

Finally, the radial quantum number n′ is left to be identified. In ρc → ∞ limit energy
separation between the 2D CHO states (nm) and (n′,m + 2) can be 0 when n′ = n − 1, 2
when n′ = n − 2, 4 if n′ = n − 3, generally, any even integer 2p when n′ = n − p − 1.
According to the discussion from the preceding section, there are no intersections between
these states so that energy separation between them is greater than the values listed above
when the confinement radius has the finite value, leading to the conclusion n′ = n − 1 as the
only possibility. We stress here that 2D CHO states (nm) and (n − 1,m + 2) belong to the
degenerated energy level of 2D IHO (ρc → ∞ limit).

An analogous analysis performed for other operators leads to the conclusion that only
their second powers (k = 2) produce the same results, acting on the 2D CHO state (nm).
Here, we give just the brief review:

• Operator a2
−1 lowers both energy and angular quantum number m by 2, leading to

Enm − En′,m−2 = 2 if the following conditions are fulfilled:

(1) E > max(2n + |m| + 1, 2n′ + |m − 2| + 3), (43)

(2) g′
2(ρc, E) ≡ (m − 1)

(
1

ρc

+
ρc

m − 1

)
= 0, (44)
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leading to the results n′ = n − 1 and

ρc = √
1 − m and m � 0. (45)

• Application of a
†2

+1 on the 2D CHO state (nm) produces the other 2D CHO state (n′,m−2)

with the energy higher by 2 then the energy of the former state if

(1) E > max(2n + |m| + 1, 2n′ + |m − 2| − 1) (46)

(2) g′
2(ρc, E) ≡ (m − 1)

(
1

ρc

− ρc

m − 1

)
= 0. (47)

The second condition is fulfilled only for

ρc = √
m − 1 and m � 2 (48)

and following the discussion given above, it is found that n′ = n + 1.

• Application of a
†2

−1 on the 2D CHO state (nm) raises both energy and quantum number m
by 2: En′,m+2 − Enm = 2, if the following conditions are satisfied

(1) E > max(2n + |m| + 1, 2n′ + |m + 2| − 1), (49)

(2) g′
2(ρc, E) ≡ −(m + 1)

(
1

ρc

+
ρc

m + 1

)
= 0, (50)

giving results n′ = n + 1 and

ρc = √−m − 1 and m � −2. (51)

Expressions (42) and (45) can be written more concisely

ρc =
√

|m| + 1 (52)

and expressions (48) and (51) can be given the form

ρc =
√

|m| − 1 and |m| � 2. (53)

The above expressions give the same ρc value when the associated quantum numbers m are
such that �|m| = 2. Confinement radius value (52) is identical with the position of the
node of the radial wavefunction corresponding to the 2D IHO state with the radial quantum
number n = 1 and given projection angular momentum quantum number m. This last
value is obtained from the form of the radial wavefunction of the unconfined 2D IHO state
Rnm = ρ|m| e−ρ2/2F(−n, |m| + 1, ρ2) and the definition of the confluent hypergeometric
function [8]. In this case, according to the incidental degeneracy [3], the energy of the lowest-
laying 2D CHO state (0m) (whose radial wavefunction has no zeros) is the same as the energy
of 2D IHO state (1m) and its value is E = |m| + 3. This 2D CHO state cannot be transformed
under the action of the operators a2

±1 since the first conditions in (39) (for k = 2) and (43)
impose the requirement on its energy E > |m| + 3.

From the previous discussion it is clear that the operators a2
+1 and a

†2

+1 mutually transform
the wavefunctions of the 2D CHO stationary states with non-negative m values, and the

operators a2
−1 and a

†2

−1 do the same thing with the states having non-positive m values when
the confinement radius is determined according to (52)

�nm

a2
+1−→ �n−1,m+2

a
†2
+1−→ �nm only for the 2D CHO states with m � 0, n � 1; (54)

�nm

a2
−1−→ �n−1,m−2

a
†2
−1−→ �nm only for the 2D CHO states with m � 0, n � 1. (55)
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Table 4. Energies of the 2D CHO stationary states (10), (11) and (12) for different values of the
confinement radius ρc .

ρc E10 E11 E21

0.1 1523.564 674 02 2460.924 482 63 3542.501 753 69
0.2 380.897 008 36 615.237 370 66 885.632 217 73
0.5 60.981 459 38 98.478 581 13 141.745 193 93
1.0 15.391 538 05 24.776 009 99 35.605 834 87
2.0 4.440 505 19 6.825 774 45 9.582 826 32
5.0 3.000 000 17 4.000 003 78 5.000 027 16
∞ 3.000 000 00 4.000 000 00 5.000 000 00

For the higher k values, solution of the equation given by condition (40) depends on
energy. Thus, the requirement Enm − En′,m+k = k can be fulfilled at different ρc values for
different pairs of 2D CHO states (nm) and (n′,m+k), even with the same m value, yielding the
conclusion that this property is not of systematic character, contrary to that we have already
discussed.

The main conclusions obtained in this section are summarized as follows:

• Applying the annihilation and creation operators a±1 and a
†
±1, determined in (34) and (35),

on the wavefunction of the 2D CHO stationary state does not result in the wavefunction
corresponding to some other stationary state of this quantum system. As a consequence
the energy separation between states with adjacent values of the quantum numbers, m and
m ± 1, and the same value of quantum number n cannot be 1 h.o. at any finite radius of
confinement as it is the case with 2D IHO. This situation can be achieved only for large
values of confinement radius ρc → ∞ when the eigenspectrum of the 2D CHO coincides
with that of 2D IHO (as it was discussed in subsection 3.2). Numerical results, obtained
by applying Numerov–Cooley method with ε = 1 × 10−8, P = 4 and M = 100–1000
and presented in table 4, support that conclusion.

• When the value of the confinement radius is determined by ρc = √|m| + 1, then the
lowest-laying 2D CHO state with given quantum number m, (0m) state, has the energy
value of E = |m|+3, which is the energy of the 2D IHO state with radial quantum number
n = 1 and that quantum number m.

• When the value of the confinement radius is determined by ρc = √|m| + 1, then there
is the one-to-one correspondence between the 2D CHO states (nm) with energy E (with
the exception of the lowest-laying one), and the states (n − 1,m + 2) with energy E − 2.
The entries in table 5, obtained by Numerov–Cooley integration of the radial Schrödinger
equation (4) with ε = 1 × 10−8, P = 4 and M = 100–1000, confirm that statement.
The mutual transformation among the states with quantum numbers m and m + 2 when

m � 0 is realized via the operators a2
+1 and a

†2

+1, and the operators a2
−1 and a

†2

−1 realize the
mutual transformation among the states with quantum numbers m and m − 2 for m � 0.
This is opposite to the case of 2D IHO where all the operators a±1 and a

†
±1 act on the

wavefunctions with both non-negative and non-positive m values [15, 17].

Finally, let us consider the shell-confined 2D HO, which differs from what we have
investigated up to now, in that the form of the potential energy operator is defined by

V (ρ) =
⎧⎨
⎩

∞, ρ � ρc1
1
2ρ2, ρc1 < ρ < ρc2

∞, ρ � ρc2.

(56)
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Table 5. Energies of the 2D CHO stationary states with |m| = 3–6 at the values of the confinement
radius given by (52).

ρc = 2 ρc = √
5

n En,3 En−1,5 En,4 En−1,6

0 6.000 000 00 7.000 000 00
1 12.689 595 23 10.689 595 23 13.280 433 90 11.280 433 90
2 21.906 316 47 19.906 316 47 21.614 063 80 19.614 063 80
3 33.609 195 86 31.609 195 86 31.948 808 97 29.948 808 97
4 47.787 150 07 45.787 150 07 44.269 364 41 42.269 364 41
5 64.436 221 82 62.436 221 82 58.569 882 78 56.569 882 78

Table 6. Energies of the 2D shell-confined harmonic oscillator states with |m| = 3–6 for the values
of the confinement radius ρc1 given by the first relation in (58) and ρc2 = 30.

ρc1 = 2 ρc1 = √
5

n En,3 En−1,5 En,4 En−1,6

0 6.000 000 00 7.000 000 00
1 8.990 042 64 6.990 042 64 10.057 100 78 8.057 100 78
2 11.762 855 42 9.762 855 42 12.893 525 96 10.893 525 96
3 14.420 698 07 12.420 698 07 15.610 564 61 13.610 564 61
4 17.003 910 56 15.003 910 56 18.249 085 58 16.249 085 58
5 19.533 501 00 17.533 501 00 20.830 685 79 18.830 685 79

This leads to the imposition of the Dirichlet boundary condition at two boundary points. Thus,
the conditions to be satisfied by the radial wavefunction now assume the form

Rnm(ρc1) = Rnm(ρc2) = 0,

(
dRnm

dρ

)
ρ=ρc1

�= 0,

(
dRnm

dρ

)
ρ=ρc2

�= 0. (57)

Following the analysis given in section 3, it can be shown that the conclusions similar to those
obtained for the 2D CHO are valid for the shell-confined 2D HO only if

ρc1 =
√

|m| + 1 and ρc2 = ∞, (58)

This conclusion is confirmed by the results of the numerical tests presented in table 6 and
reproduced by the same method and the same values of the parameters as for table 5.

5. Summary

Study of the characteristic features in the eigen spectra of the 2D CHO have been realized,
for the first time, by the algebraic method. Using the infinitesimal operators of the SU(2)
group, which is the symmetry group of the 2D IHO Hamiltonian, we proved that not only the
simultaneous degeneracy, but also any accidental degeneracy is impossible between the 2D
CHO states whose quantum numbers m differ by an even integer. In the confined system under
consideration here, only accidental degeneracy between the states whose projection angular
momentum quantum numbers differ for odd integers can appear. Confinement causes the
breaking of any systematic degeneracy, but preserves SO(2) symmetry and double degeneracy
of each energy level (except the energy levels with m = 0).
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Application of the second powers of the spherical components of the annihilation and
creation operators leads to the explanation of the separation pattern of 2 h.o. units in energy
when the confinement radius has a specific value. Also, it is approved that the different
operators from the Hilbert space of 2D CHO perform the mutual transformation between the
states with non-negative and non-positive values of quantum number m at that specific value
of the confinement radius, contrary to the 2D IHO, where the application of all the operators
given in section 4 does not depend on the sign of quantum number m.

The applied method enabled us to investigate the structure of the 2D CHO eigenspectrum.
We have applied an analogous method, based on SU(3) group generators and formalism of
annihilation and creation operators, to the 3D CHO to explain thoroughly the regularities in
its energy spectrum. Also, analysis based on the SO(3) group has enabled us to establish the
criterion for simultaneous degeneracy in the confined 2D hydrogen atom, and this result, to our
knowledge, has not been reported in the literature yet. This is the contents of our forthcoming
reports.
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